Conjunctiva reconstruction by induced differentiation of human amniotic epithelial cells.

نویسندگان

  • S P Yang
  • X Z Yang
  • G P Cao
چکیده

In this study, we aimed to investigate the feasibility of directed differentiation of human amniotic epithelial cells into conjunctival epithelium under specific conditions as well as of constructing tissue-engineered conjunctiva for ocular surface reconstruction. Human amniotic epithelial cells were cultured with induced denuded conjunctival matrix and conjunctival homogenate. Immunohistochemistry of cytokeratin-4, cytokeratin-13, and muc5ac as well as PAS staining were performed. The concentration of muc5ac at different times was measured using ELISA. The differentiated cells with quantum dots were transferred onto a denuded amniotic membrane to establish tissue-engineered conjunctiva and transplanted into a rabbit model with a conjunctival defect. After induction of human amniotic epithelial cells, differentiated cells showed conjunctival epithelium phenotype, while trace amounts of mu5ac in the culture medium measured by ELISA increased gradually within 1 to 7 days. Successfully tissue-engineered conjunctiva had similar structure as normal conjunctiva and was transplanted into a rabbit model with conjunctiva defect. After 2 weeks post-surgery, conjunctiva grafts survived and were integrated. Immunohistochemistry showed conjunctival epithelium phenotype, positive cells were found in PAS staining. Thus, human amniotic epithelial cells could differentiate into conjunctival epithelium-like cells and goblet cells with partially physiological function, and we successfully restored ocular surface integrity in the rabbit model using tissue-engineered conjunctiva.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Characterization of epithelial primary culture from human conjunctiva].

OBJECTIVE To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. METHODS One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich auto...

متن کامل

بررسی اثرات کرایوپرزرویشن بر سلول های اپی تلیال قبل و بعد از جداسازی از پرده آمنیون انسانی

Background and purpose: One of the recent techniques for increasing the output of cryopreservation is using different scaffolds in long-term preservation of stem cells for cell therapy. Undesirable differentiation and decrease in the number of viable cells are two major problems in this process. In order to overcome these problems, in this study the human amniotic epithelial cells were cryopres...

متن کامل

P163: The Anti-Inflammatory Effects of Human Amniotic Membrane Epithelial Cells-Derived Condition Media

The human amniotic membrane known as the innermost single epithelial-covered layer provides many applications such as applicable anti-inflammatory and anti-cancer effects. These immunomodulatory effects belongs to the epithelial cells, a type of epiblast-derived fetal stem cells which currently used for regenerative medicine and transplantation. These cells are collected by author-prepared faci...

متن کامل

بررسی خون سازگاری سطح مزانشیمی پرده‌ی آمنیون انسانی در مقایسه با رگ مصنوعی پوشش داده شده با هپارین

Background and Objective: Amniotic membrane (AM) as a natural tissue has lots of unique features which make it a suitable candidate for vascular tissue engineering. The aim of this study was to evaluate blood compatibility of mesenchymal surface of the AM. Materials and Methods: In this study, the effect of mesenchymal surface of the AM on internal and external coagulation pathways, hemolysis a...

متن کامل

In vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes

Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2015